A Sobolev Norm Based Distance Measure for HARDI Clustering - A Feasibility Study on Phantom and Real Data
نویسندگان
چکیده
Dissimilarity measures for DTI clustering are abundant. However, for HARDI, the L2 norm has up to now been one of only few practically feasible measures. In this paper we propose a new measure, that not only compares the amplitude of diffusion profiles, but also rewards coincidence of the extrema. We tested this on phantom and real brain data. In both cases, our measure significantly outperformed the L2 norm.
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملخوشهبندی خودکار دادههای مختلط با استفاده از الگوریتم ژنتیک
In the real world clustering problems, it is often encountered to perform cluster analysis on data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. In addition, traditional methods, for example, the K-means algorithm, usually ask the user to provide the number of clusters. In this...
متن کاملMeasuring the Similarity of Trajectories Using Fuzzy Theory
In recent years, with the advancement of positioning systems, access to a large amount of movement data is provided. Among the methods of discovering knowledge from this type of data is to measure the similarity of trajectories resulting from the movement of objects. Similarity measurement has also been used in other data mining methods such as classification and clustering and is currently, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 1 شماره
صفحات -
تاریخ انتشار 2010